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PREFACE

The probability modeling approach to analyzing rater agreement has

emerged in the literature in a somewhat disjointed manner, with

different models being proposed by various authors, complicating the

task of the researcher who wishes to acquire familiarity with these

methods and apply them in his or her research. The goal of this Note is

to describe these approaches, emphasizing their basic similarities and

viewing them as variants of a common methodology.

This Note should be of use both to the applied researcher who is

interested in analyzing rater agreement data, and the technically

oriented reader concerned with methods for analyzing agreement.

Accordingly, not all sections are intended for all readers--the former

group may find some sections to contain more detail than they require,

and the latter may find some material redundant. Readers more concerned

with substantive applications may want to concentrate on the

introductory portions of each section and the computational examples.

Although an attempt has been made to be as comprehensive as

possible in surveying previous work in this area, no doubt there are

important contributions to this literature that have inadvertently been

overlooked.



SUMMARY

How do we know how many opinions are required to make a diagnosis

with necessary accuracy? One way is by examining how often physicians

agree on the diagnosis. This Note discusses statistical techniques that

can be used to analyze agreement data to address this and related

questions. Specifically, these methods make it possible to determine

from the opinions of panels of diagnosticians in an agreement study the

following: (1) the probable accuracy of an individual diagnosis; (2) the

probability of disease presence or absence given unanimous or

conflicting opinions by several diagnosticians; and (3) how many

opinions should be required to make the diagnosis. The methods

discussed include two related techniques, which differ in assumptions

about disease subtypes and associated differences among cases in their

ability to be correctly diagnosed. These techniques have many

applications in addition to that of medical diagnosis.
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I. INTRODUCTION

Powerful methods for measuring agreement on diagnosis and related

forms of classification now exist. The origin of these methods can be

traced as far back as Poisson's studies of juror agreement [1], and they

are closely related to the well known statistical techniques of latent

class and latent trait analysis [2-4]. That they are more computation-

intensive than traditional approaches to measuring agreement has

probably been a factor in their not yet having received widespread use.

However, because of advances in microcomputer hardware and software,

they are now well within reach of most researchers, and offer

considerable promise for leading to better use of agreement data than

has previously been possible.

To fully appreciate the usefulness of these methods and their

advantages relative to other ways of measuring agreement, it is helpful

to consider them in light of a hypothetical example.' Suppose that a

patient is diagnosed as having a rare disease. Immediately there are

several questions that come to mind, foremost among them being:

0 How likely is it that this diagnosis is correct?

Suppose, though, that this question cannot be answared directly,

since there is no definitive test for the disease. The questions then

asked might be as follows:

'The hypothetical example, as well as much of our discussion,
focuses on medical diagnosis as an instance of expert rating. However,
it is understood that what is said applies equally well to other types
of dichotomous classifications, e.g., the designation of a defendant as
guilty or not guilty by jurors or the categorization of parts as
operative or nonoperative by inspectors.
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" To what extent do diagnoses by this diagnostician tend to

reflect the judgment of other or most diagnosticians?

and

" Given that a single diagnosis is subject to error, how

worthwhile would it be to obtain additional opinions, for

example, a diagnosis by a second or even third independent

source?

The latter question, in turn, gives rise to another:

Given opinions by several diagnosticians, which may include

both positive and negative diagnoses, what is the probability

of having or not having the disorder?

The practical nature of these questions hardly needs to be

emphasized. Data are routinely collected by means of inter-rater

agreement studies for the specific purpose of answering them. In its

basic form, such a study consists of a sample of N cases, each evaluated

by two or more diagnosticians. The subset of such studies we are mainly

concerned with here are those where (1) the number of opinions remains

constant across cases, (2) diagnosticians formulate their opinions

independently of one another, and (3) evaluations take the form of

dichotomous ratings, for example, "disorder present" and "disorder

absent." More complex models, such as those involving multiple or

graded response categories, may be derived from this simplified model.

As an example of such a study, consider the data in Table 1.1.

These data, originally presented by Yerushalmy [5], concern ratings of

radiographic films as either indicative or not indicative of

tuberculosis by eight physicians each. As shown, the majority of cases

received eight negative ratings, with a smaller number receiving eight

positive ratings. However, disagreement is also indicated by the cases

receiving various combinations of positive and negative diagnoses.
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Table 1.1

EXAMPLE DIAGNOSTIC AGREEMENT DATA

Number of Observed
Positive Frequency

Diagnoses j f.

0 13560
1 877
2 168
3 66
4 42
5 28
6 23
7 39
8 64

SOURCE: From Ref. 5.
NOTE: Each case diagnosed

eight times. Total number of
cases is 14,867.

Surprisingly, although studies such as this which collect multiple-

rater agreement data are common, particularly in medical research [6-8],

traditional methods for analyzing this information are not well suited

to addressing the above-posed questions. Our purpose here is to

describe and illustrate a statistical approach that makes it possible to

answer these questions much more directly and precisely. Much of what

we present is not new--rather, elements are to be found scattered

throughout a diverse literature in statistics, medicine, psychology,

sociology, and education. We attempt here to weave these elements into

a coherent set of techniques that may be properly viewed as a

methodology, rather than simply a set of methods.
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ORGANIZATION OF THIS NOTE

In the remainder of this section, we review previous approaches for

the measurement of agreement. Following this, we explain the basic

rationale of the approach considered here, and present a taxonomy of

specific techniques subsumed under the general model. In the next two

sections, we present the two main variants of this approach.

METHODS FOR MEASURING AGREEMENT

Kappa and Other Agreement Indices

Several methods have previously been proposed for measuring

agreement. The most common approach is the calculation of an agreement

index. The most elementary such index consists of the proportion of

times two ratings of the same case agree. Other agreement indices

include Yule's Y [9], the odds ratio [101,2 and the phi coefficient.

A widely known class of agreement indices is obtained by dividing

the difference between observed pairwise agreement and the level

expected by chance by 1 minus the level expected by chance [12].

Various indices of this class differ in how the expected proportion of

chance agreement is calculated. Foremost among these indices is the

kappa coefficient [13, 14], which estimates chance agreement based on

the product of the marginal proportions of positive and negative

ratings. Although kappa has been widely used, and although its

usefulness for verifying that observed levels of agreement exceed chance

levels is clearly established, concern has been expressed about its

potential limitations. Several authors have discussed what has been

termed the base rate problem [15-17], whereby a rating procedure with a

high level of accuracy may yield low levels of agreement as measured by

the kappa coefficient in samples where the proportion of positive and

negative ratings (i.e., the base rates) are close to 1 and 0.3

2 Darroch and McCloud [11] also develop a more extensive methodology
for analyzing rater agreement based on the odds ratio.

3Shrout, Spitzer, and Fleiss [18], however, contended that this is
in fact a desirable property.
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A more fundamental limitation of agreement indices in general is

that they summarize all of the information on agreement and disagreement

in a single term. Thus, agreement on positive ratings and agreement on

negative ratings are subsumed under one index, which results in loss of

useful information. Further, because of the lack of an explicit

probability model underlying their calculation, such measures do not

readily permit agreement data to be used to answer the types of

questions posed above.

Variance Components Approaches

An alternative is to express agreement on dichotomous

classifications in a manner analogous to the intraclass correlation used

to assess the reliability of interval or ratio scale measures [19-211.

By this approach, positive and negative ratings are coded 1 and 0, and

the proportion of total variation among ratings that is attributable to

between-case variability (i.e., not attributable to variation in ratings

of the same case) is calculated as a measure of classification precision

or reliability. Limitations characteristic of intraclass correlation

approaches to expressing rating reliability in general, however, apply

here as well. Specifically, raters with a given degree of consistency

in the absolute sense of tending to agree or disagree on ratings of the

same type of case will yield higher or lower intraclass correlations,

depending upon the level of between-case variation, which is a function

of the prevalence of positive and negative cases in the sample. This is

directly analogous to the base rate problem of the kappa coefficient,

just as the kappa coefficient itself is closely related to the

intraclass correlation coefficient. Again, however, the more important

limitation of variance-partitioning approaches is that they do not

express agreement in a way that lends itself to answering the questions

posed above.
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Latent Structure Models

The methods we consider here fall under the general heading of what

may be termed Latent Structure Agreement Analysis. These methods

approach the problem of quantifying agreement from a much different

perspective than agreement indices or variance-partitioning methods.

Specifically, they develop a parameterized model, which entails an

explicit characterization of the relationship between individual rater

accuracy and inter-raLer agreement. In essence, these methods may be

understood as attempting to answer the question, What level of rater

accuracy would be required to generate a pattern of agreements and

disagreements such as that observed? This approach views the accuracy

of raters and the prevalence of various types of cases as unobserved

parameters, and estimates these parameters based on observed data. Once

derived, these estimates can be applied in Bayesian calculations to

provide answers to the kinds of questions posed above.

Four main variants of this approach have thus far been suggested in

the literature. Agreement data may be collected using a research design

where multiple opinions for each case come from either the same or

differing sets of raters. We refer to these as fixed and varying rating

panel designs, respectively.

In addition, a disorder may be viewed as discrete or continuous.

By the former view, cases are seen as belonging to one of a relatively

small set of categories or types, each of which corresponds to a certain

trait level and has an associated probability of eliciting a positive

rating. By the continuous view, cases are assumed to have trait levels

and corresponding probabilities of eliciting positive ratings that may

fall anywhere on a continuum. From the former assumption comes an

approach to analyzing agreement that may be recognized as a special case

of latent class analysis [2-4]; accordingly, we term the models in this

category Latent Class Agreement Analysis. Methods based on the

assumption of a continuously varying trait, in turn, may be seen as a

special case of latent trait analysis [2, 221, and are therefore termed

Latent Trait Agreement Analysis.
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Either latent structure model may be combined with either rating

design, leading to four main variants of the Latent Structure Agreement

Analysis approach. These are termed the varying panelllatent class,

fixed panel/latent class, varying panel/latent trait, and fixed

panel/latent trait models, respectively.
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II. LATENT CLASS AGREEMENT ANALYSIS

VARYING RATING PANEL

This approach corresponds to discussions of rater agreement by

Gelfand and Solomon [1, 23], Kaye [24], Kraemer [25], and Uebersax

[26].1

We first describe the basic approach and discuss the estimation and

comparison of models, and then discuss the application of derived

parameters to the estimation of rating accuracy and the interpretation

of multiple opinions. Following this, we consider a computational

example.

Model

Let N cases each be evaluated by randomly selected groups of k

raters, and let each rater's evaluation take the form of a dichotomous

rating, e.g., a positive or negative diagnosis. Recall (as illustrated

in Table 1.1) that out of k ratings for each case, any number j (j = 0,

1, ... , k) may be positive. Considering outcomes across all cases, the

frequencies of cases with each possible number of positive ratings may

be obtained, denoted fo' fl) ... I f k In accordance with the

assumptions of latent class analysis, these frequencies are assumed to

be determined by two sets of parameters: the prevalences of c mutually

exclusive and exhaustive latent classes to which cases belong (latent

class prevalences) and the conditional probabilities of a positive

rating, given a case belonging to each (conditional rating

probabilities). Each latent class is assumed to correspond to a type of

case with a specific probability of eliciting a positive rating. Thus,

latent classes may represent genetically different subtypes of a

disorder, or functional groupings of cases based on levels of symptom

'Stewart and Rey [27] and Fleiss and Shrout [28] also discuss
methods that are similar, but require that estimates of the prevalence
of positive and negative cases be available.
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intensity or salience, for example, categories of "not symptomatic,"
"moderately symptomatic," and "highly symptomatic."

The prevalences of each latent class are denoted by vI' T2' "

it , where vt (s = 1. 2, .... c) is the probability of a randomly sampled

case belonging to latent class s.2 For convenience, we indicate a

positive rating by 1 and a negative rating by 0. We denote the

conditional rating probabilities by i ill' 1 1 12 ' -' 'r11c' where

1 Ils is the probability of a positive rating given a member of latent

class s.3 By convention, we number latent classes in order of

increasing probability of eliciting a positive rating, i.e., such that

1ii1 < 112 < ... < 1itc.
The expected number of cases receiving exactly j out of k positive

ratings, denoted e., is equal to

e. () sI - I )kjeJ =N sl •slls l

This leads to the set of expected frequencies of cases with various

numbers of positive ratings, e0 , e1, ... , ek. The goal, then, is to

obtain estimates of latent class prevalences and conditional rating

2 A special case of these models occurs when it is assumed that
there is only one class to which cases belong. This situation, which we
shall be concerned with primarily in conjunction with the evaluation and
comparison of latent class models, is related to the log-linear models
for agreement analysis described by Tanner and Young (29].

3 1n the general case, this model requires that raters be randomly
sampled for each case. Because each rating is thus a random sampling,
the probability of a positive rating for a given case remains constant,
even though raters themselves may differ in their tendency to make
positive or negative ratings (in the fixed panel design discussed below,
allowances are made for rater differences). The varying panel model,
however, is also applicable under other circumstances--for example, if
the same test is repeated on multiple occasions, or the same set of
raters evaluate each case, but their probabilities of making positive
ratings, conditional on latent class, are the same. The essential
feature of the varying panel model is that, for a given case, the value
of i ls is always the same.
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probabilities, i.e., vs and il1s parameters, that maximize the

correspondence between observed and expected frequencies of cases with

various numbers of positive ratings, that is, the f. and e. terms.
J I

Estimation

Standard numerical estimation procedures can be used to find the

parameter values that maximize this correspondence. Uebersax [26]

described a procedure for obtaining maximum likelihood estimates based

on the Newton-Raphson method, following the general approach of

Lazarsfeld and Henry [2]. More recently, we have used an EM algorithm

130] related to that described by Goodman [3] and Dawid and Skene [31].4

This algorithm is more flexible than the Newton-Raphson method, but

tends to converge more slowly. A compromise is to initially apply the

EM algorithm to obtain good approximations to maximum likelihood

parameter estimates, and then to use these as starting values for the

Newton-Raphson procedure, which converges more rapidly on final

estimates. Approximate standard errors of parameter estimates are

obtained by the standard method of inverting the information matrix [2].

Identifiability

Lazarsfeld and Henry [2], Goodman [3], and others discuss

identifiability of latent class models. An unidentifiable model is

analogous to a set of equations where there are more independent

equations than variables, permitting an infinite number of solutions. A

necessary condition for model identifiability is that the number of

parameters requiring estimation be less than the number of degrees of

freedom for the observed data. Given k ratings per case, there are k +

1 possible numbers of positive ratings, but only k degrees of freedom,

since f + f + ... + fk = N. Thus, for k ratings per case, there can
0 1k

be no more than k parameters requiring estimation. The parameters

requiring estimation are c - 1 of the vr terms (one need not beS

4A description of this algorithm as applied to the varying panel
model is presented in [32].
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estimated, since they must sum to 1) and the c il ls terms. Thus, for a

model with c latent classes to be identifiable, it is necessary that k 2

2c - 1, unless constraints are imposed on parameters. Table 2.1 shows,

for varying panel models with various numbers of latent classes, the

minimum number of ratings per case necessary for a model to be

identifiable. It may be noted that for a model with two latent classes,

at least three ratings per case are required to estimate model

parameters (although four ratings would also permit a test of model

fit). Further, it has been our experience (and also noted by Kraemer

[25]) that two-class models are often not sufficient to characterize the

complexity of a rating process. We have typically found models with

three or four classes more suitable.

Satisfying the condition above is usually a necessary but not a

sufficient condition for latent class model identifiability. The

varying panel agreement model with dichotomous ratings, however, is a

relatively simple application of the general latent class model.

Experience thus far suggests that for this class of models the necessary

condition above is also a sufficient condition, except in certain

trivial cases, e.g., when all cases are unanimously rated positive or

negative, or when data that are fit perfectly by a model with a smaller

Table 2.1

MINIMUM RATINGS PER CASE REQUIRED FOR MODEL IDENTIFIABILITY
AND ASSESSMENT OF FIT: VARYING PANEL DESIGN

Ratings per Case Ratings per Case
Number of Required for Model Required for Chi-

Latent Classes Identifiability Square Test

1 1 2
2 3 4
3 5 6
4 7 8

NOTE: Assumes unconstrained model.
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number of latent classes are analyzed using a model with a larger number

of classes.

Constraints on Model Parameters

It is often possible to estimate a model not otherwise identifiable

by imposing constraints on model parameters. For varying panel designs,

the most common constraint involves setting one or more parameters to

specified values. For example, one may set ¶ils to 0 or 1 for a

particular latent class. For examples of parameter constraints in the

estimation of latent class agreement models, see Refs. 33 and 34.

Model Fit and Comparison

The fit of a latent class agreement model may be assessed by

comparing observed results to what would be expected by the model, using

either a Pearson or likelihood ratio chi-square statistic [3]. The

Pearson chi-square is calculated by the formula X2 = (ZX(fj - ej)']/ei,

and the likelihood ratio chi-square by the formula L2 = 2Zjf log(f./e.),

where the values for e.j are calculated using estimates of is and vIts

parameters. The degrees of freedom associated with each is k - 1 minus

the number of estimated parameters. For unconstrained models, this is

equal to k - 2c + 1. Model fit is indicated by a low value relative to

the degrees of freedom, i.e., a nonsignificant value. Statistical

significance may be determined from standard tables of the X2 sta istic.

An advantage of the likelihood ratio chi-square is that it permits

comparison of alternative models of the same data. The statistical

significance of the difference between two models is evaluated by

subtracting their corresponding likelihood ratio chi-squares. The

degrees of freedom for the resulting difference statistic is equal to

the difference in the degrees of freedom for the individual chi-squares.

This requires that the models compared be nested, i.e., that the

parameters of one be a subset of those of the other. This is always the

case for models that differ only in the number of latent classes.
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In assessing model fit it is important to take sample size into

account. Given a sufficiently large sample, even a small difference

between observed and expected frequencies will likely result in

significant chi-square values. Thus, it may also be useful to assess

fit in terms of statistics such as the normed fit index (35], which are

less sample size dependent. Clogg (36] recommends an equivalent index,

calculated as L0
2 - LI 2 )/L 00, where is the likelihood ratio chi-

square for a given latent class model, and L0
2 is the corresponding

statistic obtained using a one-class (independence) model. This is

analogous to the proportion of variance unexplained by the one-class

model that is explained by the multiple-class model

Having described the parameters of the varying rating panel latent

class agreement model and discussed methods by which parameters are

estimated and models evaluated, we now proceed to the subject of how

these estimates can be used to address the questions concerning the

accuracy and interpretation of ratings initially posed.

Estimation of Rating Accuracy

In the definition of latent classes we stated that each corresponds

to a subset of cases with similar trait levels and probabilities of

eliciting a positive rating. If each latent class can be interpreted as

a variety of positive or negative case, model parameter estimates may be

used to directly estimate rating accuracy.s

The accuracy of dichotomous ratings is commonly expressed in terms

of four indices: sensitivity (Se), specificity (Sp), positive

predictive validity (Pv+), and negative predictive validity (Pv-).

Rating sensitivity is defined as the probability of a positive rating

given a positive case. Rating specificity is the probability of a

sAlternatively, each latent class may be viewed as a specific
mixture of positive and negative cases. In this situation, slightly
more complex formulas than those presented here are required, but, as
discussed in Uebersax [26], it is generally possible to derive at least
upper bound estimates for rating accuracy using these methods.
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negative rating given a negative case. Positive and negative predictive

validity are defined as the reverse conditional probabilities of

sensitivity and specificity. That is, positive predictive validity is

the probability of a positive case given a positive rating and negative

predictive validity is the probability of a negative case given a

negative rating. By denoting a positive and negative case + and -, and

a positive and negative rating '+' and '-', we may define Se =

Pr['+'I+], Sp = Pr['-'I-], Pv+ = Pr[+I'+'], and Pv- = Pr[-I'-'].

For a given model, let the numbers a and b be such that latent

classes 1, 2, ... , a are subtypes of negative cases, and latent classes

b, b + 1, ... , c are subtypes of positive cases. Se, Sp, Pv+, and Pv-

are then obtained as follows:

C

s-b Is¶ lls
Se = , (2)

C

s=b s

a
S! is(' 1 s)

Sp = , (3)
a

S=I S

C

s=b s lis
Pv+ = , (4)

Ci: isil

s=l S lis

and

a
S! is('s-irl - lts)

PV- = (5)
C

£~ IS (1- 1 s)

Also of interest is the false-negative error rate, or the

probability of a negative rating given a positive case, equal to 1 -
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Se, and the false-positive error rate, or the probability of a positive

rating given a negative case, equal to 1 - Sp.

Interpreting Multiple Opinions

One of its most useful features is that the latent class approach

to analyzing agreement leads directly to methods for the interpretation

and integration of opinions by multiple raters. Again, let latent

classes be assumed to be varieties of negative and positive cases.

Simple Bayesian calculations show that the probability of a case being

positive, i.e., belonging to one of the positive latent classes, given

exactly j out of k positive ratings, is equal to

C j sk-i

s=b is is
Pr[+Ij' = j] = , (6)

where j' is a variable to denote the number of positive ratings observed

for a case. Subtracting this from one, the probability of a case being

negative given j out of k positive ratings is obtained. This equation

can be used to classify cases in the original rating study as positive

or negative. By consideration of other values for k, it may also be

used to derive classification rules for future cases based on different

numbers of ratings.

Number of Opinions Necessary for Required Accuracy

The above formula is easily applied to determine the number of

opinions necessary to insure a required degree of classification

accuracy. Suppose, for example, that a sufficiently accurate

classification is defined as one with a certain positive predictive

validity. One may then, for example, ask what the minimum number of

ratings is such that the probability of a case being positive, given

unanimous positive ratings, is greater than or equal to this value. The

situation of unanimous positive ratings may be seen as a special case of
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the above where j = k. Thus this formula can be used to estimate the

positive predictive validity of unanimous positive ratings by panels 9 f

1 rater, 2 raters, etc. The minimum panel size necessary to classify a

case positive with the required accuracy would then be the smallest

number needed for (6) to exceed the criterion established. By extension

of this reasoning, one may allow for non-unanimous panel outcomes or use

other criteria for minimal required accuracy in determining panel size.

We have shown how parameter estimates obtained with the latent

class agreement model can be used to estimate rater accuracy,

probabilistically interpret opinions by multiple raters, and determine

an appropriate number of opinions for a sufficiently accurate

classification. Of necessity, we consider only some of the applications

possible. Many others are implicit in the ability of these methods to

provide direct or upper bound estimates of rating accuracy. For

example, estimated rater accuracy can be used to determine the expected

attenuation in statistical power of comparisons that involve groups

whose members are assigned on the basis of fallible ratings [371,

estimate the decrease in apparent accuracy of a diagnostic test compared

to a criterion diagnosis that is itself unreliable [38], or correct for

bias in estimation of disease prevalence due to misclassification error

[39].

Software

Varying panel latent class agreement models can be estimated with

the PANEL microcomputer program. We document this program in a

companion RAND Note [321.

Varying Number of Ratings per Case

The varying panel latent class model may be generalized to designs

where cases are rated different numbers of times. Examples of this

occur when some ratings are lost or only some cases in a study are

multiply rated. Let K be the maximum number of ratings any case

receives. We may summarize results of an agreement study as the

proportion of cases that are rated k (k = 1, 2, ... , K) times and
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receive j (j = O, 1, ... , k) positive ratings. The EM algorithm may

again be used to obtain maximum likelihood estimates of vs and nItS

parameters.

Pearson and likelihood ratio chi-square statistics can be used to

test model fit. These may bs viewed as the sum of separate chi-squares

for cases with each number of ratings. Assessment of statistical

sigaificance for a test of model fit is complicated by the fact that

outcomes for various values of k could not be interpreted as resulting

from independent multinomials. To test statistical significance

requires that a common multinomial be estimated. It is not difficult to

see how this can be done. Given an underlying multinomial for results

with K ratings, expectations of results with k < K ratings are obtained

using a formula related to the hypergeometric distribution (Uebersax

[26], Equation 6). Thus, a likelihood function may be constructed for

results across all values of k given probabilities for the K-way

mu]tinomial. These probabilities may then be estimated from observed

data using a numerical procedure such as the Newton-Raphson method. An

analytic method for estimating the common underlying multinomial may

also be possible. Chi-square statistics are calculated by comparison of

the proportions of cases with various combinations of k and j expected

given the latenL class model with those expected given the multinomial

model. The degrees of freedom for this test are equal to K minus the

number of estimated latent class model parameters.

The assumption of a common multinomial is not necessary, however,

to use the difference likelihood ratio chi-square statistic for

comparison of alternative latent class models. For nested models, this

may be calculated and tested for significance as before, with degrees of

freedom equal to the difference in the number of estimated parameters.

The normed fit index may also be calculated and used as before.



- 18 -

Example

We illustrate these methods with the Yerushalmy data previously

shown in Table 1.1. Three models, with two, :hree, and four latent

classes, designated 2) M31 and M4 are estimated. 6 Table 2.2 contains

expected frequencies for each model. The correspondence of expected and

observed frequencies is seen to increase with the number of latent

classes. Fit indices are shown in Table 2.3. The two-class model does

not fit well. Chi-square statistics for a three-class model are

statistically significant, suggesting lack of fit, but this is partly

due to the sample size. The likelihood ratio chi-square for a one-

class independence model is 7160.808, resulting in a normed fit index

for M3 of 0.997, so that, by this criterion, M3 does provide good fit.

Model M4 fits the data better than M3 by a statistically significant
degree, (difference L2 of 21.897 - 0.099 = 21.798, with 3 - 1 = 2 df),

but, again, this is virtually guaranteed by the large sample size.

Table 2.2

OBSERVED AND EXPECTED RESULTS FOR YERUSHALMY RATING DATA

Expected Frequency e.

Number of Observed Model
Positive Frequency
Ratings j f. M2  M3  MP4

0 13560 13452.90 13557.27 13559.99
1 877 1090.14 883.24 877.02
2 168 45.27 146.65 167.91
3 66 25.08 92.25 66.29
4 42 55.10 42.24 41.25
5 28 79.94 16.39 29.05
6 23 72.49 21.68 22.13
7 39 37.56 50.51 39.64
8 64 8.51 56.76 63.73

6We estimate these models using the PANEL program.
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Table 2.3

FIT OF ALTERNATIVE LATENT CLASS MODELS
OF YERUSHALMY DATA

Pearson Likelihood Ratio Normed
Chi-Square Chi-Square Fit

Model df X2 L2 Index

M2 5 874.201 528.495 0.926

13 3 22.473 21.897 0.997

M14 1 0.099 0.099 1.000

Table 2.4

PARAMETER ESTIMATES FOR THREE-CLASS MODEL
OF YERUSHALMY DATA

Conditional Positive
Latent Class Prevalence Rating Probability

s is Ills

1 0.9636 0.0072
(0.0027) (0.0003)

2 0.0275 0.2660
(0.0024) (0.0177)

3 0.0088 0.9003
(0.0008) (0.0134)

NOTE: Standard errors are shown below estimates in
parentheses.

We accordingly focus our attention on MP3 (Table 2.4). For

illustration, we assume that the three latent classes consist of two

negative classes and one positive class with respect to tuberculosis,

for example, (1) unaffected cases, (2) cases with less serious

conditions that have an elevated probability of being diagnosed

positive, and (3) cases with tuberculosis. Since there is only one
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positive latent class, Equation (2) reduces to make rating sensitivity

equal to 1113' estimated as 0.9003. From Equation (3), rating

specificity is estimated as [(0.9636)(1 - 0.0072) + (0.0275)(1 -

0.2660)1/(0.9636 + 0.0275) = 0.986.• From Equations (4) and (5), the

positive predictive validity of diagnosis is estimated as approximately

0.357, and negative predictive validity as 0.999.

We also use parameter estimates to determine probable diagnostic

status given combinations of positive and negative ratings. From

Equation (6) we estimate the probability of tuberculosis given one

positive and one negative rating as 0.061. Since the probability of

tuberculosis given one positive rating, Pv+, is estimated as 0.357, we

see the difference that a second negative rating makes.' Similarly,

given five positive and three negative ratings, Equation (6) results in

an estimated probability of 0.263 of a positive case.

Finally, we consider how many opinions are necessary to make a

diagnosis with required accuracy. Suppose that we define sufficient

accuracy as a positive predictive validity of at least 0.90. Use of

Equation (6) results in estimated predictive validities of 0.781, 0.925,

and 0.977 for a positive diagnosis based on unanimous positive ratings

by two, three, and four diagnosticians, respectively. We would

therefore need a minimum of three ratings to obtain the necessary

accuracy.

We have thus shown how, by the latent class approach, agreement

data can be used to address the practical questions concerning ratings

initially posed. We next consider a version of these methods applicable

to fixed panel designs.

7We base calculated values on four-place accuracy of parameter
estimates; rounding error may therefore occur.

'This illustrates the practical value of the latent class modeling
approach. One would of course expect a lower probability of a disorder
given that the second opinion is negative. But without such an approach
it would not be possible to determine by how much it is reduced.
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FIXED RATING PANEL

In a fixed panel design the same raters are used to rate each case,

corresponding to what is also commonly called a fully crossed rating

design. This design is useful in that it usually requires fewer raters,

and provides information about the comparative accuracy of individual

raters.

Discussions of fixed panel latent class agreement models may be

found in Bergan [40], Clogg [41], Dawid and Skene [31], Dillon and

Mulani [33], Espeland and Handelman [34], Uebersax and Grove [42], and

Walter and Irwig [43]. The fixed panel agreement model corresponds

closely to traditional latent class analysis applications as described

by Lazarsfeld and Henry [21, Goodman [3], and Haberman [4].

Model

We again assume that each of a sample of N cases is rated by a

panel consisting of k raters. We now assume, though, that the raters

are the same for each case, and are numbered j = 1, 2, ... , k.

Let a positive rating again be represented by 1 and a negative

rating by 0. Let the vector U. be one of I (I = 2 k) unique patterns of

positive and negative ratings (see Table 2.6), whose jth element, u i,

corresponds to the rating of the jth rater. As before, let s denote one

of c latent classes to which a case may belong, and let the prevalence

of latent class s be vt
s

Again, latent classes are defined such that all cases belonging to

the same latent class have the same probability of eliciting a positive

rating. However, we now allow this probability to be different for each

rater. To accommodate this, a slightly different notation is adopted.

Specifically, let vr11sj (s = 1, 2, ... , c; j = 1, 2, ... , k) be the

conditional probability of a case belonging to latent class s being

rated positive by rater j.

Given rs and nlIsj parameters, we may calculate the joint

probability of a case being a member of latent class s and receiving

rating pattern U,. This, denoted by ¶is' is calculated as



- 22 -

k U.. 1-u..11 = 1 (71) ¶ 1

is S j=l IsIj Isj

The exponents u.. and 1 - u.. function such that either vl si or 1 -

•IFsj are counted in calculating the joint probability, depending on

whether the jth rater's rating is positive or negative. The expected

frequency of each rating pattern, e. (i = 1, 2, ... , I), is then given

by

C
e. = N Z v.. (8)I S=l IS

Estimation, Identifiability, and Assessment of Model Fit

The results of ratings by k raters across N cases may be summarized

by the number of times each rating pattern occurs, i.e., a set of

observed frequencies, f. (i = 1, 2, ... , I). The purpose of estimation

is to obtain estimates for 7s and 7vlsj parameters that lead to expected

frequencies as close as possible to observed frequencies. Again, the EM

algorithm can be used to obtain maximum likelihood estimates.

The subject of identifiability for this class of models is fully

discussed by Goodman [3] in the context of the general latent class

model. As in the varying panel case, there are c - 1 prevalence

parameters, but there are ck conditional rating probability parameters

(one for each combination of rater and latent class), making the total

number requiring estimation c(k + 1) - 1. For unconstrained models, a

unique solution therefore requires that I 2 c(k + 1). Again, this is a

necessary but not a sufficient condition. In the case of two latent

classes (see Table 2.5), three raters are required, which is consistent

with this formula. For a three-class model, however, five raters are

required, even though this formula suggests that four would be enough.

The general method for establishing model identifiability is by

evaluating the rank of the matrix of derivatives of pattern

probabilities with respect to model parameters [31, or the rank of the
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Table 2.5

MINIMUM RATINGS PER CASE REQUIRED FOR MODEL IDENTIFIABILITY
AND ASSESSMENT OF FIT: FIXED PANEL DESIGN

Number of Raters Number of Raters
Number of Required for Model Required for Chi-

Latent Classes Identifiability Square Test df

1 1 2 1
2 3 4 6
3 5 5 14
4 5 5 8

NOTE: Assumes unconstrained model; degrees of freedom are
for X 2 or L 2 test with minimum required number of raters.

matrix of second derivatives of the log-likelihood function with respect

to model parameters. This test is automatically performed by standard

latent class analysis programs. If a model is found to be not

identifiable, the number of estimated parameters must be reduced, either

by decreasing the number of latent classes or by imposing constraints on

parameters.

As with the varying panel model, one useful type of constraint is

to require certain parameters to be equal to fixed values. Another

useful constraint for fixed panel models is to require that certain

conditional rating probabilities be equal, e.g., the values of v1lsj be

the same across raters for a particular latent class.

Model fit is again assessed with the X2 or L 2 chi-square statistic.

The formulas are the same, except that the number of observed and

expected frequencies now equal I, and the degrees of freedom for the

statistics now equal I - 1 minus the number of estimated parameters.

The normed fit index may also be calculated as before.
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Applications

Parameter estimates can again be used to estimate rater accuracy.

We again assume that latent classes are interpretable as varieties of

negative and positive cases, latent classes 1 through a corresponding to

negative cases and latent classes b through c to positive cases, and

understand that when such a simple differentiation of latent classes is

not possible the procedures described below may be suitably modified.

The accuracy of individual raters may be expressed using the

indices discussed earlier, Se, Sp, Pv+, and Pv-, subscripts being added

to denote values for each rater. These are obtained from Equations (2)

through (5), with estimates of i 11• used in place of those of 11s"

Resulting values may also be averaged across raters, providing mean

accuracy indices.

One may again use parameter estimates to classify cases based on

multiple ratings. Recalling the definition of iI. as the jointis
probability of a case belonging to latent class s and receiving rating

pattern U1 , the probability of a case being positive given this pattern

is

C

s=b Is
Pr[+Iu i] (9)

SM1 IS

An important aspect of Equations (7) and (9) is that they lead to

different probabilities of a case being positive depending on which

raters make positive and negative ratings. We discuss implications of

this in the example below.

Software

The fixed panel latent class agreement model can be implemented

using standard latent class analysis programs such as Clogg's MLLSA [36]

and Haberman's LAT [4]. The PANMARK program of van de Pol, Langeheine,

and de Jong [44], though primarily intended for Markov model analysis,
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can also be used for these models. All of these programs are available

in microcomputer form.

Example

It is useful to consider the fixed panel model in an application

other than diagnosis, since, in fact, the applicability of these methods

extends far beyond that context. We consider ratings on the

appropriateness of 859 possible indications for performing the procedure

carotid endarterectomy by a panel of medical experts, gathered in a

study described by Park et al. [45]. For present purposes, we recode

ratings, originally made on a nine-point Likert-type scale (1 =

extremely inappropriate indication; 9 = extremely appropriate

indication), to dichotomies, a positive rating corresponding to a judged

indication and a negative rating to a nonindication. The observed

frequencies of all possible rating patterns among five raters are shown

in Table 2.6. We consider models with two, three, and four latent

classes, designated Mi2 , M3 , and Mi4 . The expected pattern frequencies

given each model are also shown in Table 2.6. Fit indices for each

model are shown in Table 2.7. The X2 and L2 statistics for both M3 and

M4 are nonsignificant, indicating good fit.
42

A one-class independence model yields a value of 1433.925 for L 2

Using this to calculate the normed fit index, we see that Mi3 and M4 also

provide good fit by this criterion. With a difference likelihood ratio

chi-square of 23.059 - 7.534 = 15.525 (16 - 14 = 2 df), the fit of Mi4 is

better than that of Mi3 by a statistically significant amount, but this

must be weighed against the greater parsimony of M3.

Parameter estimates for M 3 are shown in Table 2.8.' To see how

these might be used, suppose that the three latent classes are (1)

nonindications, (2) equivocal indications, and (3) valid indications for

treatment, and that of interest is, for each rater, the probability of a

positive rating given a valid indication, or each rater's sensitivity.

'Parameter estimates shown are from the KLLSA program. The input
file used to generate these results is shown in the Appendix. Standard
errors shown are from the PANMARK program.
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Table 2.6

OBSERVED AND EXPECTED RESULTS FOR PHYSICIAN RATINGS
OF TREATMENT APPROPRIATENESS

Expected Frequency e.

Rating Rater Observed Model
Pattern Frequency

i 1 2 3 4 5 f' F2  F3 114

1 + + + + + 69 35.52 69.25 68.94
2 + + + + - 2 3.42 1.85 2.47
3 + + + - + 4 9.14 4.36 4.43
4 + + + - - 1 0.88 0.17 0.16
5 + + - + + 2 20.20 2.11 2.24
6 + + - + - 1 1.96 0.25 0.76
7 + + - - + 0 5.23 0.59 0.00
8 + + - - - 0 0.51 0.14 0.00
9 + - + + + 82 102.93 80.75 81.13

10 + - + + - 4 10.11 9.90 4.70
11 + - + - + 23 26.91 23.69 25.29
12 + - + - - 8 4.34 6.52 6.92
13 + - - + + 67 59.59 63.80 66.71
14 + - - + - 24 10.33 19.50 24.31
15 + - - - + 42 23.65 45.72 40.81
16 + - - - - 41 55.48 41.41 41.14
17 - + + + + 0 1.08 0.04 0.00
18 - + + + - 0 0.10 0.01 0.00
19 - + + - + 0 0.28 0.03 0.00
20 - + + - - 0 0.03 0.01 0.00
21 - + - + + 0 0.62 0.09 0.00
22 - + - + - 0 0.06 0.02 0.00
23 - + - - + 0 0.16 0.06 0.00
24 - + - - - 0 0.02 0.02 0.00
25 - - + + + 5 3.30 3.56 2.61
26 - - + + - 0 1.34 1.51 1.14
27 - - + - + 8 2.69 3.32 8.66
28 - - + - - 8 12.13 9.04 7.57
29 - - - + + 5 6.74 9.95 7.02
30 - - - + - 28 31.92 26.41 26.98
31 - - - - + 49 58.16 48.69 48.17
32 - - - - - 386 370.39 .86.25 386.86

SOURCE: Park et al. (451.
NOTE: Total N of 859. Columns may not sum to total due to

rounding.
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Table 2.7

FIT OF ALTERNATIVE LATENT CLASS MODELS OF
TREATMENT APPROPRIATENESS RATINGS

Pearson Likelihood Ratio Normed
Chi-Square Chi-Square Fit

Model df X2 L Index

i2 21 126.347 130.496 0.909

Mf3 16 24.085 23.059 0.984

N 4  14 9.248 7.534 0.995

NOTE: Degrees of freedom shown are obtained from the
MLLSA program, which treats parameter estimates of 0 or 1
as constrained, reducing the number considered estimated.

Table 2.8

PARAMETER ESTIMATES FOR THREE-CLASS MODEL
OF TREATMENT APPROPRIATENESS RATINGS

Latent Conditional Positive Rating Probability
Class Prevalence

sS lsl Sls2 iljs3 ls4 I11s5

1 0.5838 0.0712 0.0000 0.0213 0.0596 0.1023
(0.0219) (0.0183) -- (0.0081) (0.0121) (0.0165)

2 0.2625 0.8972 0.0118 0.3277 0.5967 0.7805
(0.0224) (0.0341) (0.0154) (0.0565) (0.0497) (0.0440)

3 0.1537 1.0000 0.5783 0.9806 0.9437 0.9752
(0.0212) -- (0.0710) (0.0274) (0.0285) (0.0183)

NOTE: Standard errors are shown in parentheses. Estimates of 1 or 0
indicate convergence to a boundary value [3] (see also NOTE for previous
table); for these, standard errors are not calculated.

These are equal to the estimates of v 113j shown in Table 2.8. Thus,

estimated rater sensitivities, Sel, Se2 , Se 3 , Se 4 , and S:?5 , of 1.0000,

0.5783, 0.9806, 0.9437, and 0.9752, are obtained. Following the
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procedure for calculating positive predictive validity, we obtain

estimates of 0.357, 0.966, 0.605, 0.431, and 0.362 for Pv+l, Pv+2, Pv+ 3,

Pv+4 , and Pv+5 "

From Equations (7) and (9) we see that the probability of a

possible indication being a true indication given five positive ratings

is 0.995. Suppose, however, that of the five ratings, four are positive

and one is negative. The probability of a true indication now depends

on which rater makes the negative rating: if it is Rater 4, for

example, we obtain an estimate of 0.943; however, if it is Rater 2, we

estimate the probability as only 0.622.

It is by its ability to combine opinions in an explicit and

probabilistically cr rect way that the fixed panel latent class

agreement model demonstrates perhaps its greatest value relative to

traditional ways of interpreting panel ratings. For example, the non-

Bayesian view might hold a rating pattern of (+, -, +, +, +) to just as

strongly indicate a positive case as a pattern of {+, +, +, -, +).

However, this is neither probabilistically correct, nor necessarily the

way we really interpret multiple opinions. If one rater tends to make

positive or negative ratings more often than others, we are likely to

take this information into account. All other things being equal, a

positive rating by a conservative rater gives us greater cause to

believe that a case is positive than one by a nonconservative rater.10

An important limitation of traditional methods for interpreting multiple

rater opinions is that they do not take this into account.

This also suggests why it may be useful to include in panels both

conservative and nonconservative raters. If the need arises to identify

a positive case with a high degree of certainty, one may be selected

that even conservative raters rate as positive. Conversely, negative

ratings by nonconservative raters may be useful when there is a need to

identify a case as negative with a high degree of certainty.

"1OAn interesting consequence of this is the opportunity it provides
for "gaming" by raters. For example, if a rater wanted to ensure that a
positive rating carried the most weight, it would be advantageous to
make positive ratings sparingly up to that point--thus appearing
conservative. A positive rating would then be interpreted as stronger
evidence of a positive case.
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Again, we have considered only some of the applications that the

fixed panel latent class agreement model permits.

DIRECTIONS FOR FUTURE RESEARCH

We believe that the methods described in this section offer many

advantages for the analysis and interpretation of rater agreement, and

recommend their use. One possible concern is the assumption of cases as

falling into only a small number of latent classes. Although it would

naturally be more appealing to think of disorders as displaying instead

continuously varying levels of a latent trait, latent class models

appear to provide a suitable approximation for a large number of

applications.

There are several areas where additional research would be helpful.

The extent to which sample size affects the accuracy of parameter

estimation needs to be investigated; simulation studies may prove

helpful in determining this. Generalizations of these methods may also

increase their range of application. It should be possible to adapt the

fixed panel model to allow for missing observations, or rotating panel

designs where the raters rating each case are systematically varied. We

have considered only dichotomous ratings here, but latent class models

for polytomous ratings have also been discussed [31, 33, 40, 41, 46].

Latent class models can also be used to analyze agreement on ordered

response category or Likert-type ratings [47].
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IlI. LATENT TRAIT AGREEMENT ANALYSIS

The methods in this section are related to the statistical

techniques of item response theory [22, 481 and Rasch modeling [49],

which together may be subsumed under the more general heading of latent

trait analysis [2]. We term the use of these methods in the analysis of

agreement Latent Trait Agreement Analysis. Related discussions may be

found in Fleiss [50] and Kraemer [371, and Quinn [51] has recently shown

that equivalent models may be derived from signal detection theory [52].

VARYING RATING PANEL

Model

We begin by assuming a continuous dimension of trait intensity or

severity. The location of a case on this continuum we term its latent

trait level, and denote by 0. The word "trait" is used broadly, and it

is understood that the continuum may also be an aggregate dimension

based on several traits or symptoms.

The latent trait agreement model may be understood -i. terms of two

functions (Fig. 3.1). The first, f(e), describes the probability of

encountering a case at each latent trait level 9. The second, p(e),

describes the probability, given a case at level 0, of a positive

rating. We term f(O) the trait probability density function, and p(e)

the probability of positive rating (or diagnosis) function.

The probability of a randomly selected case being rated positive is

equal to a weighted average of p(8) over all levels of 0, where the

weight is the probability of a case having trait level 0, i.e., f(8).

Thus, it is equal to the product of f(O) times p(O) summed across the

range of 0, or the integral of f(m)p(m) over all levels of 0.

If f(O) and p(8) were known, they would lead directly to estimates

for the probability of various patterns of agreement and disagreement by

multiple raters. For example, given a case at level e, the probability

of two positive ratings is p(8) 2 ; for a randomly selected case, this
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1.0

Probability of positive diagnosis function

P( 0)

.0D

0

Case distribution

0

Latent Trait Level
Fig. 3.1--Varying panel latent trait agreement model:
trait probability density function, f(8), and probability
of positive rating function, p(O), given a continuum
of latent trait intensity or severity, 0. Dotted lines
correspond to weighted (by prevalence) probability
functions of negative (left) and positive (right) cases.

probability is thus equal to the integral of f(O)p(8)2 over all levels

of 0. Similarly, the probability of two positive ratings and one

negative rating is equal to the integral of f(9)p(8) 2 [I - p(O)J over all

levels of 8. Generalizing this, the probability of exactly j positive

ratings by k randomly selected raters is

Prtj' A = (k) ff(8p(8)itl _ p(e)] kj dB, (10)

where j' is a variable to denote the number of positive ratings.

Multiplying Pr[j' = j] times the number of cases in an agreement study,

N, gives the expected number of cases with exactly j positive ratings,

e, (j 0, 1, ... , k).J
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Knowing only f(B) and p(8), therefore, it is possible to predict

the results of a rater agreement study. Conversely, given certain

assumptions about their general forms, one can use the results of a

study to estimate these functions. What we propose, therefore, is as

follows: first, agreement data are used to estimate f(8) and p(8); then

these functions are used to estimate rater accuracy and provide a basis

for combining multiple ratings.

As a plausible way of approaching the initial estimation problem,

we begin by assuming that there are two types of cases constituting a

population, positive and negative cases, each normally distributEd with

respect to the trait continuum. Specifically, let f 1 (8) and f 2 (8) be

normal distributions describing the unconditional probabilities of

negative and positive cases, respectively, occurring at each level of 8,

with f1(8) being defined by mean Vi and standard deviation al, and f 2 (8)

by j2 and a 2. That is, f 1 (8) is the probability of sampling a case that

is both negative and at trait level 8, and f 2 (8) is the probability of

sampling a case that is both positive and at trait level 8. These

functions are not probability density functions per se, since their

integrals do not equal 1. Rather, they are the product of the

probability density functions for negative and positive cases multiplied

by their corresponding prevalences. The sum of these functions, f(8) =

f 1 (0) + f 2 (8), provides the latent trait probability density function.

Derivation of the Probability of Positive Rating Function

We now consider the function p(O). Let each rater be assumed to

have a rating threshold, or some point along 8 such that cases with a

trait level at or above this point are rated positive, and those below

rated negative. In the varying panel case, let the thresholds of a

population of raters be assumed normally distributed and described by

the probability density function t(8), with mean Ut and standard

deviation at. The cumulative distribution function of t(O) gives the

probability that the threshold of a randomly selected rater is at or

below each level of 8. This is equivalent to the probability of a case
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with trait level e equaling or exceeding the threshold of a randomly

selected rater, and therefore being rated positive. Thus, this

cumulative distribution function is equal to the probability of positive

rating function, p(G).

Estimation

We have therefore developed a model which provides the general form

for f(8) and p(8). According to this model, f(8) and p(O) depend only

on the means and standard deviations of f1(0) and f 2 (e) (ll)01 91-•2 $ and

a2), the mean and standard deviation of t(8) (vt and a ), and the

prevalences of positive and negative cases (which we designate P and 1 -

P, respectively). Only one prevalence must be estimated, since they sum

to 1. Also, either of the means and either of the standard deviations

for f1 (0) and f 2 (8) can be chosen arbitrarily. Knowledge of as few as

five parameters, therefore, allows estimation of f(8) and p(e).

For a set of parameter values, we may determine the probability of

each number of positive ratings given k ratings per case with Equation

( .). Given observed frequencies f. (j = 0, 1, ... , k) for the numberJ
of cases with each number of positive ratings, we then calculate the

log-likelihood of the joint outcome as

k
log L = Z f. log Pr[j' = j]. (11)

j=O J

From the results of a rater agreement study, therefore, we may use

numerical procedures to obtain maximum likelihood estimates for model

parameters. Specifically, the maximum likelihood estimates of model

parameters are those that maximize Equation (11). Uebersax [261

described the use of the Newton-Raphson method to obtain estimates for

this model. For the Newton-Raphson procedure to converge effectively,

however, it is usually necessary to apply an initial grid-search

algorithm, which tests all combinations of parameter values using a
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relatively coarse resolution, to find starting values in the vicinity of

maximum likelihood estimates.'

As in the previous section, model fit may be assessed by comparison

of observed and expected outcome frequencies using a X2 or L2 test, with

degrees of freedom equal to k minus the number of estimated parameters.

Estimating Rater Accuracy and Related Applications

Knowledge of f(8) and p(8) and their component parameters permits

inferences concerning rating accuracy. For example, since the

probability of a case at trait level 8 being rated positive is p(8), the

conditional probability of a randomly selecLed positive case being rated

positive, i.e., Se, is equal to the integral of f 2 (8)p(8) over all

levels of 8, divided by P. Similarly, Sp is equal to the integral of

f 1 (8)0)l - p( 8 )] over all levels of 0, divided by 1 - P. Uebersax [26]

shows similar formulas for positive and negative predictive validity.

Combining Multiple Opinions

Once estimated, f(6) and p(O) can also be used to classify cases

based on multiple ratings. The probability of a case being positive,

given j out of k positive ratings is

ff 2 (e)p()J fl - p( 8 )]k'j dO

Pr[+Ij' = j] = (12)

JfCe)p(m)i1l - P(0)]k-j dO

We may also use Equation (12) with different values of k to derive

classification rules for futures cases.

Uebersax [26) considers a computational example of the varying

panel latent trait agreement model, so we do not present one here.

'Preliminary research suggests that it may be possible to eliminate
the grid-search algorithm by the use of a "hybrid" estimation algorithm
that combines the EM and Newton-Raphson methods.
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FIXED RATING PANEL

Model

For this model, each rater is taken to have a characteristic

threshold for making a positive rating. This threshold, however, is

assumed subject to random variation, described by a normal probability

distribution of values around a mean. The cumulative distribution

function of this probability distribution gives the probability of a

case at each level of e equaling or exceeding the threshold of that

rater, and a positive rating being made. Thus, associated with each

rater j is a Pr-Dability of positive rating function p.(0) having the

shape ot a normal cumulative distribution function and centered at the

point on 6 corresponding to that rater's mean threshold (Fig. 3.2).

Following a standard technique in item response theory, we assume

probability of positive rating functions to have the shapes of logistic

ogives, which closely approximate normal cumulative distribution

1.0

p1 (O) P2 (0) P3(0)

.U5--------------------- -------- -------------
a .

0 b, ,•

Latent Trait Level

Fig. 3.2--Fixed panel latent trait agreement model: the
probability of positive rating functions of three hypo-
thetical raters are superimposed on the trait probability
density function, f(8); the b values correspond to each
rater's mean threshold.
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functions. The logistic function for each rater j depends on two

parameters, a. and bi, which correspond to the variability and mean

value, respectively, of that rater's threshold. Specifically, this

function is defined as pj(0) = 1/{l + exp[-l.7a.(0 - bj)]M.

We define f(8), f 1 (0), and f2 (0) in the same way as for the varying

panel model.

Estimation

As with the latent class fixed panel model, positive and negative

ratings by k raters may correspond to one of I = 2k patterns. The

probability of the ith such pattern, Ui, occurring is

k u.. 1-u..

Pr[V = U.] = ff(e) jk p.(e) Ji[i - j(9)] i dO, (13)
.1 j=iElP1 j0 J ()

where V is the vector of observed ratings and u ij again corresponds to

the rating of the jth rater, coded 1 or 0.

The expected frequency of pattern i, ei, is obtained by multiplying

results of Equation (13) times the number of cases rated, N. The log-

likelihood for the joint outcome of an agreement study is therefore

I
log L =Z f. log PrIV = U.], (14)

where f. is defined as in the fixed panel latent class model.1

Maximum likelihood estimates of parameters are again those that

maximize log L and may be numerically obtained. If threshold

variability is assumed constant across raters (though this is not an

assumption one would make in all applications), the number of parameters

necessary to estimate may be reduced to k + 4: a mean threshold (bj)

for each rater, within-rater threshold variability (a), the mean of

either positive or negative cases on the latent trait continuum (VI1 or

U2 ), the standard deviation of either positive or negative cases (a1 or
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a2), and the prevalence of positive cases (P). For unique estimates,

this number must be less than or equal to I - 1. Model fit is assessed

by comparison of observed and expected pattern frequencies with a X2 or

L2 test with degrees of freedom equal to I - 1 minus the number of

estimated parameters.

Applications

The sensitivity, specificity, and positive and negative predictive

validity of each rater's ratings can be estimated in the same way as

with the varying panel model, using the individual probability of

positive rating functions p1(0) in place of p(8). These can also be

averaged across raters to provide mean accuracy indices.

Parameter estimates can again be used to classify a case as

positive or negative based on its ratings. For example, the joint

probability of a case being positive and receiving pattern U., which we

denote Prfu., +J, is obtained from Equation (13), using f 2 (0) in place

of f(O). The probability of a positive case given U. is then equal to

Pr[U., +1 divided by Pr[v = u.

Example

We illustrate this model with the hypothetical data in Table 3.1.

These correspond to a study in which four diagnosticians rate 497 cases

for presence or absence of a disorder. To reduce the number of

estimated parameters, we assume a1 = a2 = o = 1. We also assume a1 = a42

a 3 = a4 = a, i.e., that threshold variability is constant across

raters. An arbitrary value of 0 is taken for v1, Thus, the parameters

requiring estimation are V2' P, a, bl, b2, b 3, and b Initial

estimates are obtained by a grid-search algorithm. Using these as

starting values, a Newton-Raphson algorithm provides the maximum

likelihood estimates shown in Table 3.2.

Expected frequencies for each rating pattern given these estimates

are shown in Table 3.1. Comparison of these with the observed

frequencies results in values of 6.42 and 6.75 for X2 and L2 ,
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Table 3.1

RESULTS OF HYPOTHETICAL DIAGNOSTIC AGREEMENT STUDY

Rating Diagnostician Observed Expected
Pattern Frequency Frequency

i 1 2 3 4 f. e.
1 I

1 + . + + 38 38.0
2 + + + - 38 36.9
3 + + - + 21 23.9
4 + + - - 65 63.4

5 + - + + 7 6.7
6 + - + - 17 18.0
7 + - - + 11 11.5
8 + - - - 120 119.1
9 - + + + 3 1.3

10 - + + - 4 3.5
11 - + - + 1 2.3
12 - + - - 22 23.3
13 - - + + 0 .6
14 - - + - 5 6.7
15 - - - + 7 4.2
16 - - - - 138 137.9

Table 3.2

PARAMETER ESTIMATES FOR FIXED PANEL
LATENT TRAIT AGREEMENT MODEL

Parameter £Etimate Standard Error

12 2.92 1.17

P 0.35 0.08

a 1.65 0.55

b01 0.08 0.26

b2 1.66 0.67

b 3  2.88 1.01

b4 3.32 1.19
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respectively. With 15 - 7 = 8 df, these are both nonsignificant at the

0.5 level, indicating good fit.

From these parameter values, sensitivities for Raters 1 through 4

are estimated as 0.92, 0.74, 0.51, and 0.41, and specificities as 0.52,

0.81, 0.92, and 0.95. Estimated mean sensitivity and specificity across

raters are 0.65 and 0.80, respectively.

DIRECTIONS FOR FUTURE RESEARCH

We have considered two latent distributions, one corresponding to

negative and one to positive cases. However, it is possible to

generalize this approach. For example, positive cases may consist of

two subtypes, each normally distributed on the latent trait continuum.

In some applications it might make sense to consider cases as following

a single distribution [26]. There is also no need to require normal

distributions; different parameterized distributional forms may also be

considered.

We believe that significant improvements are possible for the

estimation of these models. For example, marginal maximum likelihood

estimation [53] may prove useful.

The question naturally arises of whether latent class or latent

trait agreement models would be better for a given set of data.

Ideally, both approaches could be used and a selriction made on the basis

of which provides better fit. However, although formal statistical

methods for comparing the fit of nested models exist, there is no

generally accepted method for comparing qualitatively different models;

research in this area, though, is proceeding (see, for example, Ref.

54).

Because the estimation procedures and software are better developed

for the latent class agreement model, we would generally recommend that

investigators pursue that approach first.
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Appendix A

SAMPLE INPUT FILE FOR FIXED PANEL LATENT
CLASS AGREEMENT MODEL

The following shows an input file for estimating model M3 of the

Park et al. [45] treatment appropriateness rating data using the MLLSA

latent class analysis program [36]:

Park et al. rating data--three latent classes
5 3 859 150-.1 1 1 1 1
22222

FREE
69 2 4 1 2 1 0 0 82 4 23 8 67 24 42 41
0 0 0 0 0 0 0 0 5 0 8 8 5 28 49 386

.33 .33 .34

.90 .10 .60 .40 .10 .90

.90 .10 .60 .40 .10 .90

.90 .10 .60 .40 .10 .90

.90 .10 .60 .40 .10 .90

.90 .10 .60 .40 .10 .90
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